CLASSIFICATION OF INFINITE DIMENSIONAL WEIGHT MODULES OVER THE LIE SUPERALGEBRAsl(2/1)
نویسندگان
چکیده
منابع مشابه
0 Classification of Infinite Dimensional Weight Modules over the Lie
We give a complete classification of infinite dimensional indecomposable weight modules over the Lie superalgebra sl(2/1). §1. Introduction Among the basic-classical Lie superalgebras classified by Kac [3], the lowest dimensional of these is the Lie superalgebra B(0, 1) or osp(1, 2), while the lowest dimensional of these which has an isotropic odd simple root is the Lie superalgebra A(1, 0) or ...
متن کاملLie Powers of Infinite-Dimensional Modules
We consider Lie powers of group-modules over fields of prime characteristic and generalise some recent results for finite-dimensional modules to modules of arbitrary dimension. MSC 2000: 17B01, 20C07
متن کاملClassification of Irreducible Weight Modules with a Finite-dimensional Weight Space over the Twisted Schrödinger-Virasoro Lie algebra
It is shown that the support of an irreducible weight module over the SchrödingerVirasoro Lie algebra with an infinite-dimensional weight space, coincides with the weight lattice and that all nontrivial weight spaces of such a module are infinite-dimensional. As a side-product, it is obtained that every simple weight module over the Schrödinger-Virasoro Lie algebra with a nontrivial finite-dime...
متن کاملWeight Modules over Exp-polynomial Lie Algebras
In this paper, we generalize a result by Berman and Billig on weight modules over Lie algebras with polynomial multiplication. More precisely, we show that a highest weight module with an exp-polynomial “highest weight” has finite dimensional weight spaces. We also get a class of irreducible weight modules with finite dimensional weight spaces over generalized Virasoro algebras which do not occ...
متن کاملCLASSIFICATION OF FINITE DIMENSIONAL MODULES OF SINGLY ATYPICAL TYPE OVER THE LIE SUPERALGEBRAS sl(m/n)
We classify the finite dimensional indecomposable sl(m/n)-modules with at least a typical or singly atypical primitive weight. We do this classification not only for weight modules, but also for generalized weight modules. We obtain that such a generalized weight module is simply a module obtained by “linking” sub-quotient modules of generalized Kac-modules. By applying our results to sl(m/1), ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications in Algebra
سال: 2001
ISSN: 0092-7872,1532-4125
DOI: 10.1081/agb-100001685